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Design of Experiments for Model Calibration of Multi-
Physics Systems with Targeted Events of Interest 

Diane Villanueva1 and Benjamin P. Smarslok2 
Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 

 The design of hypersonic air vehicles involves coupled, multi-physics interactions, which are predicted through 
computational models of various levels of fidelity and accuracy. To reduce uncertainty and improve predictive 
capability, these models are calibrated with experimental data. Since the number of experiments is often limited, 
especially those conducted for structures undergoing the combined loading of hypersonic flight, optimal data 
collection is of great importance for uncertainty reduction and model validation. In this research, the maximum 
expected information gain is used to determine which wind tunnel specimen geometry, instrumentation locations, and 
observables are projected to be most informative for Bayesian calibration of the uncertain parameters of an 
aerothermal model. Higher fidelity simulations and synthetic experimental data are used to measure and compare the 
actual information gain from optimal designs to the expected information gain. It was observed that geometries and 
instrumentation locations at the limits of the design space provided the maximum expected information gain. 
Additionally, tests to measure the output of the furthest downstream model in the Bayesian network were favored due 
their ability to calibrate the full set of uncertain parameters. This study was extended to include an assumed cost model 
and a framework was built to trade-off cost and expected information gain. 

For accurate prediction of events of interest, the Targeted Information Gain for Error Reduction (TIGER) method 
is introduced to balance the placement of exploration points in the design space based on model accuracy and capturing 
the event of interest. This approach was compared to using sequential and all-at-once random data collection methods. 
The comparison of global and local prediction errors indicated that this is a feasible approach based on an analytical 
two-dimensional example.  The method was also successful in a classification problem for flutter and critical limit 
cycle oscillation amplitude for a panel in hypersonic flow. 

 
Introduction 

 
 The extreme environment of hypersonic flight leads an aircraft structure to exhibit highly coupled 
aerothermoelastic response. In order to effectively meet structural design margins and maximize aircraft performance 
by safely reducing design weight, uncertainty-quantified computational aero-thermal-structural models are necessary. 
This requires an understanding of the complex fluid-thermal-structural interactions of hypersonic flow and the 
uncertainties that hinder accurate modeling of aircraft structural response. Some of the sources of these uncertainties 
include imperfect knowledge of aerothermoelastic coupling, reduced-order model approximations, modeling 
assumptions, and limited data from experiments. With test data limited by experimental costs and the inability to fully 
replicate hypersonic environments through ground tests, the optimal design of model calibration experiments is of 
great importance.  
 Due to the cost and physical limitations of experimental studies, especially those conducted for structures 
undergoing the combined loading of hypersonic flight, the number and type of tests at even small scales (e.g., panel 
level) is limited. Examples of such tests include the aerothermal tests conducted by Glass and Hunt1 in NASA’s 8-
foot High-Temperature Tunnel (HTT) on spherical domes protruding from a flat ramp subjected Mach 6.5 flow, which 
were designed to simulate a deformed hypersonic aircraft panel. In this paper, we seek to design aerothermal 
experiments similar to those performed by Glass and Hunt, focused on optimizing the geometry and instrumentation 
of a wind tunnel specimen for maximum uncertainty reduction in aerothermal models through calibration. Multiple 
observables can be measured in a wind tunnel test of this nature, namely aerodynamic pressure and heat flux. Due to 
experimental costs, it is assumed that there is a limited, discrete set of specimen and instrumentation locations available 
to be studied in a high-speed tunnel, such as the 8-foot HTT, under the desired hypersonic testing conditions. 
 In the first part of this study, a method is developed to obtain optimum data collection for calibration of coupled 
fluid-thermal-structural models for aerodynamic pressure and heating of rigid specimens with deformations 
corresponding to combinations of the first and second structural mode shapes subjected to hypersonic flow. The 

                                                           
1 Research Engineer, Universal Technology Corporation 
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approach employed is to explore a combination of lower-fidelity models (i.e., 3rd-order piston theory and Eckert’s 
reference temperature method) and corresponding discrepancy models to overcome computationally intractable 
coupled aerothermoelastic predictions from computational fluid dynamics (CFD). Inevitably, this combination of 
lower fidelity models and their discrepancy models are to some degree uncertain, such that a robust uncertainty 
quantification framework is necessary to ensure predictions at some confidence level. As part of an uncertainty 
quantification framework, calibration of these models with experimental data improves the accuracy and predictive 
capabilities.  

As the number of experiments is limited, it is imperative to be able to anticipate the benefit from conducting 
experiments and maximize the amount of information that is gained from an experiment. Information theory and 
decision theory approaches have been used extensively in experimental design, taking different approaches in 
measuring the information gained from an experiment in terms of reducing the uncertainty in model parameters. For 
nonlinear relationships between observables and models, which is typical of aerothermoelastic models for 
hypersonics, these approaches include the maximization of expected information gain2-4, entropy5, and mutual 
information.6 Bryant and Terejanu6 sought to find the optimal sequence of experimental designs by maximizing the 
mutual information. Bayesian statistics provides a framework for integrating experimental observations and 
computational model predictions with uncertainty. Bayesian networks enable the fusion of various forms of 
information and capturing complex relationships between uncertainties and model predictions through nodes (i.e., 
conditional probabilities) of a network.7 By incorporating experimental data into individual nodes, uncertainty can be 
reduced over the entire network. Bayesian networks are used in this study to represent interactions between 
aerothermoelastic models and experimental data for Bayesian model calibration. Previous work on Bayesian 
calibration of aerothermal models used historic data from the aforementioned Glass and Hunt wind tunnel experiments 
to quantify model discrepancy and input uncertainties.8-10 This data set has been used for several purposes in recent 
and on-going research efforts, including aerothermal model calibration8,9 and model validation studies.10,11 

 This work considers the maximization of the expected information gain criterion2,3,6 to determine which design is 
optimal in terms of the geometry of the specimen and the instrumentation of the specimen. The expected information 
gain can be simply thought of as the expected change in prior to posterior distributions of uncertain parameters 
(measured by the Kullback-Leibler divergence) after an experiment is performed. Therefore, a large expected 
information gain value would correspond to a large change in the distribution of the uncertain parameters, which 
indicates that the experimental design provided information that had a large effect on the uncertainty. Expected 
information gain can be used to compare the utility of data gathered from experiments or simulations of various 
fidelities. Additionally, it allows the design of experimental conditions against cost (e.g., cost of experiment versus 
expected information gain).  

For the aerothermal calibration experiment considered in the present study, the observables are aerodynamic 
pressure and heat flux at different locations on the specimen, with each specimen instrumented for either pressure or 
heat flux measurements. This allows for not only optimal design of the experimental specimen, but also the optimal 
instrumentation and measurement locations for the observables.  The data collected can also be optimized such that 
only subsets of data in a multi-level or hierarchical system are measured.   

With an experimental budget in mind, the second part of this study formulates the optimal data collection 
aerothermal problem to trade off the expected information gained of the experiment with the cost of the experiment 
itself.  Using cost assumptions for instrumentation and manufacturing of the experimental specimen, the optimal 
designs are examined. The research provides the foundation of a framework to aid decision making for resource 
allocation for data collection for model calibration in a multi-physics system. 

 In addition to global accuracy, if a model is used to predict a specific event of interest, it is also important that 
some of the calibration data is collected near that region so the model can reliably and accurately predict the occurrence 
of the event. Some examples of such events include failure (e.g., exceeding a limit state corresponding to max stress 
or temperature, buckling) or transition into another regime (e.g., elastic to plastic, laminar to turbulent). Various 
approaches have been used to build surrogate models that improve probability of failure and limit state predictions20-

24 or locate feasible regions of the design space.25 In communication theory and pattern recognition, information 
measures have been modified to include utilities based on the ability to meet a goal.26,27 The value of the experiment 
was measured quantitatively by the amount of information added from the experiment, and qualitatively by its ability 
to meet a goal. In a similar manner, the third part of this study examines a weighted form of the EIG criterion where 
the weight is determined by the probability of the event of interest (EoI).  However, to ensure global accuracy, data 
points are still selected globally based on a bi-objective formulation, called the Targeted Information Gain for Error 
Reduction (TIGER) criterion. The methodology is illustrated on a 2-D analytical example and for the identification of 
the Mach numbers for flutter and critical amplitude of limit cycle oscillation for a panel in hypersonic flow conditions.  
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As a whole, this research is part of an effort to incorporate data from experiments that consider subsets of physics 
(e.g., aerothermal response) in an uncertainty quantification framework for a multi-physics model. The major 
contributions of this work are 

• An optimal data collection framework to allocate experimental resources to different types of experiments 
and models in a multi-physics system based on expected information gain 

• Introducing budget constraints into an optimal data collection framework 
• Developing a method to target events of interest into optimal data collection framework 

The remainder of the report consists of three parts corresponding the contributions listed above. 
 

Part 1: Optimal Design of Wind Tunnel Experiments for Aerothermal Model Calibration 
 

 In the study described in Part 1, the maximum expected information gain is used to determine which wind tunnel 
specimen geometry, instrumentation locations, and observables are projected to be most informative for Bayesian 
calibration of the uncertain parameters of an aerothermal model. Higher fidelity simulations and synthetic 
experimental data are used to measure and compare the actual information gain from optimal designs to the expected 
information gain. A process of sequential data collection and model calibration is  used until the maximum number of 
tests are reached. Of interest is the allocation of tests between models in the multi-physics systems, the information 
gained for the calibration parameters, and the reduction of uncertainty in the predictions of the quantities of interest. 
 Section I describes the aerothermal models used in this study and the experiments considered for model calibration. 
Section II details the optimal data collection methodology, and Section III illustrates these methods in the design of 
an experiment for aerothermal model calibration. The final section of Part 1 summarizes conclusions taken from this 
study. 

I. Aerothermal Model Definition and Experiments 

A. Aerothermoelastic Coupling 
Consider a panel section on the forebody of a representative hypersonic vehicle configuration, as shown in Figure 

1.29 As the vehicle is subjected to hypersonic flow (location ‘1’), an attached oblique shock is created at the forebody 
of the panel, which feeds back to alter the aerodynamic pressure on the panel. This is commonly referred to as the 
aeroelastic portion of the coupling. The panel is also subjected to aerothermal effects from aerodynamic heating. 
Naturally, this aerothermal component is coupled to the aeroelastic component, since a change in the temperature of 
the structure causes additional deformation, which in turn further alters both the aerodynamic pressure and the 
aerodynamic heating. Figure 2 schematically illustrates these fluid-thermal-structural interactions as a coupled 
aerothermoelastic response, including model components: aerodynamic pressure, aerodynamic heating, heat transfer, 
and structural deformation.30  

 

  
 
 While Figure 2 represents the fully-coupled aerothermoelastic system, the present study will focus on the 
relationship between aerodynamic pressure and heating, known as the aerothermal portion of the model. In the 

 
Figure 1. Representative panel  behind shock 
on a hypersonic vehicle 

 

 
Figure 2. Aerothermoelastic Coupling 
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following subsection, a set of previous aerothermal experiments are described that are later used for calibration of the 
aerothermal model.  

B. Aerothermal Experiments 
Glass and Hunt conducted hypersonic wind tunnel tests to investigate the thermal and structural loads on body 

panels in extreme environments.1 This set of tests was designed to investigate the aerodynamic pressure and heat flux 
on a deformed panel in hypersonic flow. To simulate the deformed panel, rigid, spherical dome protuberances were 
constructed at different height-to-diameter (H/D) ratios.  

The protuberances are assumed to be rigid, such that the coupling between structural deformation and aerodynamic 
heating can be neglected. The coupled aerothermoelastic model in Figure 2 can be simplified to the aerothermal 
portion by examining only the aerodynamic pressure and aerodynamic heating.  
 Along with the Mach number (M1) and freestream pressure (p1) for each test run, the data reports both the 
aerodynamic pressure (p4) and aerodynamic heat flux (Q4) at the center of the flat plate and at 58 instrumented location 
on the spherical dome. For the purposes of this analysis in this paper, where only the panel behavior in two dimensions 
is considered, we limit the analysis to 11 points instrumented along the specimen’s centerline.  

The next section details the models that are used to estimate the pressure and heating. 

C. Aerothermal Models 
Given the freestream flight conditions (p1, M1, T1) and the surface inclination angle (θ), the local conditions at the 

leading edge of the panel (p3, M3, T3) resulting from an oblique shockwave can be computed using oblique shock 
relations, shown in Eqs. (1) - (4). The oblique shock calculations do not have any dependency on the geometry of the 
panel itself, solely the surface inclination of the forebody and freestream conditions. Thus, it is only valid at locations 
where no structural deformation is present (i.e., a flat plate). 

   (1) 

   (2) 

   (3) 

   (4) 

Once the flow properties at the leading edge of the panel are calculated from oblique shock relations, piston theory 
provides a simplified relationship between the unsteady pressure on the panel and turbulent surface pressure.12 This 
simple pressure model is desired for computational tractability and uses the leading edge conditions to approximate 
the aerodynamic pressure load chord-wise across the panel (p4, M4, T4). In piston theory, the pressure prediction is 
dependent on the slope of the panel (∂w/∂x) and the velocity of deformation (∂w/∂t). As stated previously, the panel 
is assumed to be rigid hence ∂w/∂t is zero. In the case of no deformation (i.e., a flat plate where ∂w/∂x = 0), the pressure 
across the panel is the same as the pressure at the leading edge, i.e., . A 3rd-order expansion of piston theory 
is presented in Eq. (5). 
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After calculating the aerodynamic pressure and flow conditions along the panel surface, the aerodynamic heat flux 
is predicted using the computationally efficient Eckert's reference temperature method assuming a calorically perfect 
gas.13 The Eckert's reference temperature is computed by Eq. (6) and the heat flux across the spherical dome follows 
in Eq. (7). 

   (6) 

   (7) 

Where, St* is the reference Stanton number, ρ* is the reference density, Ue is the inviscid flow velocity at the dome 
location, is the reference specific heat, Taw and Tw are the adiabatic wall and actual wall temperature, respectively, 
and Te is the boundary layer edge temperature at any location along the dome. 

II. Optimal Data Collection for Bayesian Model Calibration 
In this section, a framework to optimally collect data for calibration of the aerothermal model is presented. First 

the Bayesian network, which includes model inputs, model discrepancy, measurement errors, and calibration 
parameters, is described. Then we introduce the metric to optimally collect data, the expected information gain of the 
future experiment. 

A. Bayesian Model Calibration 
The Bayesian network in Figure 3 represents the aerothermal models and relationships described in Section I, 

where the observations y are data from a Glass and Hunt type experiment. Specifically, it shows the relationships 
between the aerodynamic pressure and heat flux model predictions (p4, Q4), Glass and Hunt data (𝑦𝑦𝑝𝑝4, 𝑦𝑦𝑄𝑄4), 
deterministic model inputs (p1, M1, T1, Tw), measurement errors (εyp, εyQ), and discrepancy terms for calibration (εPT, 
εERT). The model discrepancy terms will be discussed in the following subsection. 

 

Related efforts8,9 focusing on quantifying model uncertainty in aerothermal predictions followed the framework 
described by Kennedy and O’Hagan14 that relates the measurement from the experiment y to the model output G 
through model discrepancy εG (also referred to as model error or model inadequacy), and measurement error εy. This 
relationship is shown as 

 )( , ( ) ( )G yy G x x xε εθ= ++   (8) 

where x represents the design variables, θ represents the uncertain parameters. In this work, the only uncertain 
parameters are contained in the discrepancy model (i.e., no uncertain parameters in the piston theory or Eckert’s 
reference temperature models) such that this relationship becomes 

*
3 30.5( ) 0.22( )w e awT T T T T T= + − + −
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4 ( )e p aw wQ St U c T Tρ= −

*
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Figure 3. Aerothermal Bayesian Network 
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 ( ( , ) () )yGy G x x xθ εε ++=   (9) 

For the Glass and Hunt setup described previously, the discrepancy models εG are εPT and εERT. The uncertain 
parameters θ are defined in Sec. II. 

Bayesian model calibration is used to obtain the distributions of the uncertain model parameters θ, given 
observations of the pressure yp and yQ. Bayes’ theorem is written for the aerothermal models and Glass and Hunt data 
in Eq. (10), where the prior distributions of the uncertain parameters are given by 𝜋𝜋(𝜃𝜃). 
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, |

( )| ],
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p Q
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y y
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θ π θ
π θ

θ π θ θ
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∫
  (10) 

     Bayesian model calibration incorporates all of the available data from the corresponding observables. In the next 
section, a metric will be introduced that will help quantify the significance of incorporating data into the Bayesian 
network, which will enable determination of optimal data collection. 

B. Expected Information Gain 
For experiments aimed at parameter inference or Bayesian model calibration, a popular metric for measuring the 

utility of an experiment is the information gain. An optimal experimental design can be found through maximization 
of the expected information gain. Lindley1 proposed the measure of the expected information gain as the expected 
Kullback-Leibler divergence15 of the posterior (i.e., post-experiment) and prior distribution of the uncertain 
parameters. The expected information gain can be expressed as 

 Pr( | , )| , ) ln Pr(y | x)dy
P

(
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Pr(
r(

)
Y

dxx yU yx θθ θ
θΘ

 


=  


∫ ∫   (11) 

where θ  denotes the uncertain parameters, y are the future experimental result, and x are the design variables.3 This 
formulation can be interpreted intuitively by examining the possible effect of a future result, y. For example, let y 
decrease the entropy of θ  by a large amount (e.g., increasing Pr( | , )y xθ  relative to the prior distribution of Pr( )θ ). 
In this case, the information gain is large and is thus more informative for inference or calibration. The expectation 
is taken over the possible experimental results y given a design x, prior distributions Pr( )θ , and measurement 
uncertainty εy of the experiment. 
 Monte Carlo sampling can be used to estimate the expected information gain in Eq. (11), as shown in Eq. (12).3,16  
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The Monte Carlo approximation for expected information gain that considers measurements at k locations on the 
specimen is shown in Eq. (13), where yl represents the measurement at the lth location of the set of candidate locations 
L.  
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 Similarly, the expected information gain for a single instrumentation location, l, is  
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C. Sequential Data Collection 
The process of calibration of the uncertain parameters proceeds in iterations. In each iteration, the optimal 

geometry is found, followed by the optimal instrumentation locations. This is a sequential “greedy” approach that 
purely looks to exploit areas of large expected information gain in each iteration. In this study, the optimal geometry 
d belongs to a discrete set of candidate designs D. Additionally, the instrumentation locations dinst belong to the discrete 
set of candidate locations L. The locations that are instrumented have a Uinst value larger than the second smallest Uinst 
value, which effectively leaves out the two locations with the smallest Uinst values. This can be summarized in the 
optimization problem formulation in Eq. (15). 
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 Once the optimum geometry and instrumentation locations are found, a test is performed and the models are 
calibrated as described in Sec. II.B. This study uses Kriging surrogates of Reynolds Averaged Navier-Stokes 
computational fluid dynamics predictions developed by Crowell et al.18 as synthetic test data. A small amount of noise 
is placed on the surrogate predictions. This noise was modeled as a normal distribution with a zero mean and standard 
deviation of 5% of the measurement standard deviation, which is discussed in the following section. 
 Figure 4 displays a flowchart of the process used to find the optimal geometry and instrumentation. In this study, 
the stopping criterion is the number of tests that are performed. Once the maximum number of tests is reached, the 
assumption is made that future tests will be performed for model validation rather than calibration. The area of the 
design of validation tests will be a subject of future research.  
 

 
  

 
Figure 4. Flowchart of the process of finding the optimal geometry and instrumentation for calibration 

Calculate and for each geometry 
with current discrepancy models

Calculate Uinst :
instrumentation of max Utest geometry

Instrument k locations with 
largest Uinst

Perform Test

Calibrate

Stopping 
criterion: 

ntest >nmax?
yes

no
Begin Validation 

Tests

Find max Utest geometry or 

ntest = 1

ntest = ntest+1

Define design space (candidate geometries and instrumentation locations), 
quantities of interest, & formulate discrepancy models



8 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

III. Optimal Data Collection for Aerothermal Experiments 
The previous sections described a framework to select the optimal geometry, instrumentation, and type of test for 

sequential Bayesian calibration of aerothermal models. Next, the expected information gain methodology is applied 
to discrepancy models for aerodynamic pressure and heat flux with candidate geometries and instrumentation 
locations. Figure 5 displays all nine candidate geometries with the displacement w over the normalized panel length. 
Eleven candidate locations for instrumentation are also shown. The displacement is a function of the scale factors a1 
and a2 for the first and second mode shapes Φ , respectively, where x is the coordinate along the length of the 
geometry. 

 1 1 2 2( ) ( ) ( )w x a x a x= Φ + Φ   (16) 

The bounds a1 are [-5, 5], and [-2, 2] for a2 give displacements that are close to the magnitudes of the heights of the 
spherical domes used by Glass and Hunt and used in previous model calibration studies.8,9 Eleven candidate 
instrumentation locations were considered, which corresponds to the number that Glass and Hunt considered. The 11 
candidate locations were equally spaced between 10% and 90% of the specimen length. Figure 5 also displays these 
candidate instrumentation locations on each geometry. In this study, 9 of the 11 candidate locations will be 
instrumented based on ranking of Uinst values for the optimal geometry. 

 
 Table 1 lists the test conditions: freestream Mach number, temperature, pressure, and forebody surface angle of 
inclination (as shown in Figure 1). Additionally, the table lists the measurement uncertainties.  

  

      The discrepancy model for piston theory εPT is a linear function of the scale factors of the first two mode shapes 
(a1 and a2 for the first and second mode shape, respectively) and slope of the dome protuberance 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, while Eckert’s 

reference temperature εERT is modeled as a linear function of the slope, as shown in Eqs. (17) and (18). 

 
Figure 5. Candiate geometries, where candidate locations for instrumentation are represented by 

unfilled circles 
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Table 1. Test conditions 
Condition Value 

Mach number, M1 8 
Temperature, T1 226.5 K 

Pressure, p1 1197 N/m2 
Surface inclination angle 5 degrees 

εyp N(0, 500) N/m2 
εyQ N(0, 8000) W/m2 
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x

cε = +
∂
∂

  (18) 

Table 2 lists the prior distributions for the uncertain parameters (i.e., the coefficients of discrepancy models). All prior 
distributions are modeled as uniform distributions.  

 
As in Eqs. (13) and (14), Monte Carlo sampling was used to estimate the expected information gain. Here, 1,000 

samples for N and M were used in this estimate. Slice sampling,19 a form of Markov Chain Monte Carlo, was used for 
calibration to 2,000 samples from the posterior distributions with 20 burn-in samples. 

The total number of tests to be performed was set at six. In the first iteration of the optimal data collection and 
calibration process, the maximum expected information gain geometries and instrumentation for heat flux and pressure 
were both found; both tests were performed and used for the first calibration. The remaining iterations only select one 
geometry for either pressure or heat flux for testing and calibration. Therefore, a total of 5 iterations provides the 
desired number of 6 test results. Twenty realizations of this optimal data collection and calibration process were 
performed to assess the effect of randomness. Thus, there are 20 distinct sets of tests, optimal geometries, 
instrumentation locations, and calibrated predictions of the pressure and heat flux.  
 The remainder of this section will examine one realization (Realization #3) to show trends in the selection of the 
test type, geometry, and instrumentation locations, along with their effect on the prediction of pressure and heat flux. 
Finally, a general trends from all twenty realizations are summarized. 

A. Results for a Single Realization 
A description of the type of test and geometry in each experimental design iteration is shown in Table 3. Heat flux 

tests outnumbered pressure tests, which only occurred at the first iteration (as required) and last iteration.   

 
 
 
 
 
 
 
 

Table 2. Prior distributions for uncertain model discrepancy parameters 
Parameters Prior Distribution 

b1 U(-500,500) 
b2 U(-15e3,15e3) 
b3 U(-15e3,15e3) 
b4 U(-10e3,10e3) 
c0 U(1e4,5e4) 
c1 U(1e5,1e6) 

 

Table 3. Description of tests for Realization #3 
Iteration Design Type a a2 

1 
d1 Q -5 -2 
d7 p -5 2 

2 d9 Q 5 2 
3 d7 Q -5 2 
4 d3 Q 5 -2 
5 d3 p 5 -2 
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Figure 6 displays the maximum Utest in each iteration for each type of test. The expected information gain for the 
heat flux test is larger than a pressure test, leading to heat flux tests until the Utest from a pressure test is larger in the 
final iteration. 

 
 The Kullback-Leibler divergence DKL from prior to posterior distributions of the uncertain parameters was also 
calculated at each iteration as a measure of the actual information gain. For this calculation of DKL, the uncertain 
parameters were treated together as a multivariate normal distribution. Comparing Figs. 7a and 7b, the tests led to a 
change in the distribution of the uncertain parameters following the trend of what was expected from the estimate of 
Utest. 
 The larger Utest values for Q tests compared to p tests in Figure 6a can be attributed to the pressure prediction 
feeding into the heat flux prediction as shown in the Bayesian network from Figure 3. This setup results in Q 
measurements that calibrate both εPT and εERT, whereas p measurements only calibrate εPT. Therefore, 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑄𝑄  is larger 
until the uncertainty in the parameters of εERT is much smaller compared the parameters of εPT. 
 The optimal instrumentation of the design iterations is shown in  
Figure 7a. The expected information gain value of each instrumentation location Uinst is shown in Figure 7b. Also 
shown are error bars at +/-σ around each Uinst value, which were found by conducting 10 separate Monte Carlo 
estimates of Uinst. A general trend shown by the optimal instrumentation locations is withholding instrumentation at 
locations where the slope of the specimen geometry is near zero. For example, the specimens for the Q and p tests in 
the first iteration are not instrumented at the point where the displacement is greatest (i.e., where the slope is near 
zero) and the end of the geometry where the displacement levels off to zero. However, noise in the calculation from 
Monte Carlo sampling does cause some instrumentation to go against this trend. For example, in Iteration 4, the points 
around the maximum displacement/minimum slope points are not instrumented. At this point in the iterations, the Uinst  
are all relatively small compared to the first few iterations, such that the error from the Monte Carlo estimate is large 
compared to Uinst. 

 
 

Figure 6. Realization #3: Comparison of the expected information gain of the test, and the KL 
divergence of prior and posterior. 
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Figure 8 and Figure 9 compare the calibrated predictions of pressure and heat flux, respectively, of all candidate 
designs after five iterations to the uncorrected predictions and the “true” value from the CFD surrogates. For the 
pressure predictions, the reduction in uncertainty was most notable for the two geometries that underwent both 
pressure and heat flux tests, designs d3 (a1 = 5, a2 = -2) and d7 (a1 = -5, a2 = 2). This improvement is most evident in 
the areas where the slope is large, which is at the rear of the specimen for both designs. The improvement in the heat 
flux predictions is much more apparent, as shown in Figure 9. In most cases, the uncorrected prediction required a 
simple shift (i.e., bias) of the prediction, which was mostly captured in the calibration of the coefficient c0. 

 

 
 

Figure 7. Realization #3: (a) Instrumentation of the optimal geometry in each iteration with 
instrumented points are shown as filled red circles, and (b) Uinst values with error bars corresponding 

to +/-σ, which result from 10 repetitions of each Uinst calculation 
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Figure 8. Realization #3: Comparison of nominal true, uncorrected, and calibrated pressure 
predictions. The calibrated prediction shows the +/-2σ bounds on the prediction. 
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B. Overall Trends for 20 Realizations 
Considering all 20 realizations with 6 tests each, the percentage of tests performed on the  candidate designs is 

displayed in Table 4. The tests were distributed among the geometries that were combinations of the first and second 
mode shape (d1, d3, d7, and d9). This occurs because εPT is a function of both a1 and a2, so data for a geometry that is 
purely mode 1 (d3 and d6), purely mode 2 (d2 and d8), or flat (d5), would not calibrate b1, b2, or both b1 and b2, depending 
on the geometry.  

 
 A total of 1,320 locations were examined when considering all 20 realizations of 6 tests and 11 candidate 
instrumentation locations each. As shown in Figure 10, most instrumented locations had slope values away from zero. 
Since both εPT and εERT are functions of the slope, locations with a slope near zero provide less information than the 
points with higher slope.  

 

Figure 9. Realization #3: Comparison of nominal true, uncorrected, and calibrated heat flux 
predictions. The calibrated prediction shows the +/-2σ bounds on the prediction. 
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Table 4. Geometries chosen for test for 20 realizations 
Geometry Percentage of Tests (%) 

d1 27.5 
d3 22.5 
d7 24.2 
d9 25.8 

d2, d4, d5, d6,d8 0 
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 Realizations 3 had larger expected information gain values from heat flux tests, and this was observed when 
looking at the mean Utest over the 20 realizations. This is displayed in Figure 11, along with the mean KL 
divergence. Note that there is a large increase in mean DKL at iteration 4, which is indicative of test data that shifted 
the mean, variance, or both of the uncertain parameter distributions. Furthermore, since this is a mean value, it is 
affected by large values of DKL that occur in later iterations. 

 
As another point of comparison, the error of each prediction after 5 iterations was compared against the “true” 

value obtained from the CFD surrogates.  Additionally, the errors  compared to those obtained when all data was 
used in at all-at-once calibration.  When all data is used, this corresponds to 198 data points (both pressure and heat 
flux tests, 9 candidate geometries, and 11 instrumentation locations each).  In comparison  the sequential EIG 
method only used  54 data points, or approximately 27% of the data points. The comparison over the median root 
mean square error eRMS  normalized by the range of the true values over 20 realizations of each method is shown in  
Table 5.  It was observed that the sequential EIG method provided nearly equal accuracy as using all possible data. 

 
  

 
Figure 10. Histogram of slopes of instrumented locations over 20 realizations of 6 tests and 11 

candidate instrumentation locations for each test 

 

 
 
 

Figure 11. Mean Utest and DKL of 20 realizations 
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Table 5. Comparison of median normalized eRMS over 20 realizations  
Median eRMS 

All data Sequential EIG 
p 0.070 0.076 
Q 0.064 0.063 
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Over the 20 realizations, twice as many heat flux tests occurred as pressure tests. The iterations where aero-
pressure tests were potentially chosen were at the first iteration, as dictated by the prescribed test plan, and the final 
iteration. This occurs because the Q measurement is further downstream in the Bayesian network of Figure 3, and 
can thus be used to calibrate the uncertain parameters of both εPT and εERT. Therefore, in general, more information 
can be gained from heat flux tests. 

IV. Summary 
A framework based on expected information gain was developed to determine the optimal design of experiments 

to maximize the reduction in model uncertainty through Bayesian model calibration. This investigation focused on 
the design of the geometry and instrumentation of hypersonic wind tunnel specimens for calibration of aerothermal 
models. The conditions for the experiment were based off of the historic tests performed by Glass and Hunt in NASA’s 
8-ft high temperature wind tunnel; however, the geometry of the specimens was designed as a function of structural 
mode shapes. Due to the costs of hypersonic wind tunnel tests, it was assumed that the number of tests and 
instrumentation locations of the specimen was limited. Therefore, an optimization problem was formulated to 
determine which type of test, geometry, and instrumentation locations would be most informative for model 
calibration. A sequential, greedy approach was taken to iteratively locate the design with the maximum expected 
information gain and use synthetic test data to calibrate the uncertain parameters until the maximum number of 
allowable tests was reached. The specimen configurations that combined mode shapes and instrumentation locations 
with large slopes provided the largest expected information gain values due to the form of the discrepancy model. 
Additionally, it was observed that heat flux tests occurred more frequently than pressure tests because measurements 
of heat flux data affect the calibration uncertain parameters in both piston theory and Eckert’s reference temperature 
method. This occurs because the heat flux model is the furthest downstream model in the aerothermal Bayesian 
network. 

Overall, this research is part of an effort in the development of an uncertainty quantification framework for 
hypersonic aircraft structures. The challenges include determining how to most effectively incorporate data from a 
subset of the coupled physics, and how to assess the confidence in predictions when it is required to extrapolate 
across multiple, individually-validated, coupled physics.  

 
Part 2: Budgeting Model Calibration Experiments with Expected Information Gain 

 
In Part 2, we extend the previous study to include cost assumptions for the different types of tests (i.e., pressure 

and heat flux) and geometries of the specimen. Furthermore, the instrumentation types are combined on a single 
specimen. That is, based on expected information gain, each candidate location will be instrumented for either 
pressure or heat flux rather than single specimens of all pressure or all heat flux instrumentation. We also consider 
optimal design of a batch of experiments, comparing a single test two a batch of two or three tests. 
 The first section of Part 2 introduces a cost model. Section II formulates the optimization problem to trade-off 
expected information gain from the test, and examined the Pareto front for maximum information gain and 
minimum cost.  Section III examines the optimal design of a batch of experiments, comparing the information gain 
from two more expensive tests to two cheaper tests for the same cost. 

I. Cost Model 
For the costs of the experiment, we first assume that more complex geometries are more difficult to manufacture.  

Therefore, we penalize more complex geometries by forming a cost model that is a function of the mode scale factors 
a1 and a2 where A = [a1,a2]T . The cost of the geometry for a test is 

 1 2| | | |
( ) 3 12

5 2AC a aA  = + + 
 

  (19) 

 Next, we make the assumption that heat flux tests are 3 times more expensive than a pressure test. The 
instrumentation type is represented as a binary vector S for which each element represents an instrumentation, where 
0 represents a pressure measurement and 1 represents a heat flux measurement (again, note that this study combines 
pressure and heat flux instrumentation on a single specimen). Therefore, the instrumentation cost is 

 ( ) #{ : 0} 3(#{ : 1})S s S s SC s= = + =   (20) 



16 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

 The total cost of the experiment Ctotal is then the sum of the geometry and instrumentation costs. 

 ( ) ( ) ( )total A SC X C A C S= +   (21) 

II. Optimization to Trade Off Expected Information Gain and Cost 
 

The cost models of the previous section are used as part of a bi-objective optimization problem to maximize the 
expected information gain and minimize the cost of the test. This formulation is representated as 
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  (22) 

The optimization problem was solved with the MATLAB function gamultiobj. The total number of design variables 
is 13, with two variables for the two mode scale factors and 11 for the instrumentation locations. Note that gamultiobj 
does not handle integer variables as required by this study, so the Pareto optimal designs given by gamultiobj are 
rounded to the nearest integer.  

The resulting Pareto Front is shown in Figure 12. For each design on the Pareto Front, the actual information gain 
was calculated by performing a test  (using synthetic data as described in Part 1) and calibrating by Bayesian 
calibration. The actual information gain is the KL divergence between the prior and posterior distributions of the 
uncertain parameters, approximating the posterior as a multivariate normal distribution. 

 

 
 The geometries and instrumentation types of Designs A, B, and C shown in Figure 12 were examined. Figure 13 
shows that with increasing cost the mode shapes become more complex and more resources were allocated to 
instrument for heat flux. For example, Design A is a shallow mode 1 type deformation with a cost of 35.6 and EIG of 
0.78.  Increasing the cost to 42 as in Design B, results in a design that has a larger mode 1 scale factor and EIG of 
3.13. Finally, the most expensive design, Design C, is a combination of the two mode shapes with the largest 
magnitudes of a1 and a2 and more heat flux instrumentation locations. 

 
Figure 12. Pareto Front to maximum EIG and minimum cost. The expected and actual information gains are 

compared. 
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 Next, the optimization problem was solved for a batch of two and three designs. This was achieved by adding the 
additional design variables to the design variable vector of Eq. (22). Therefore, there are 26 and 39 design variables 
for a batch of two and three designs, respectively.  Solving the problem with gamultiobj results in the Pareto Fronts 
shown in Figure 14. The actual information gain for each Pareto optimal design is also displayed. The results from 
a single test are also shown as a point of comparison. 

 

 
 The two optimal designs with a nearly equal cost as  shown in Figure 14. The comparison was made between two 
more expensive tests and three cheaper tests as shown in Figure 15 and Figure 16, respectively. The two more 
expensive tests were combination of the two mode shapes and measured heat flux at most locations, whereas the three 
cheaper designs were either mode 1 deformations or a flat plate with mostly pressure instrumentation. It was observed 
that both the expected and actual information gain was larger for the batch of two more expensive designs at a nearly 
equal cost. 
 

 
Figure 13. Geometry and instrumentation of three designs on the Pareto Front. 

 

 
Figure 14. Pareto Front for maximum EIG and minimum cost for a batch sizes of 1, 2, and 3 tests. 

 



18 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

 
 

 

III. Summary 
This research lays the foundation for a framework to include cost assumptions in an optimization problem to trade 

off the information gain from a test and the cost of performing the test. For the aerothermal problem, it was observed 
that more complex geometries (i.e., larger combinations of mode scale factors) and heat flux instrumentation occured 
with increasing cost and information gain. Studies such as these will help aid decision makers in designing tests for 
model calibration when the number of tests is limited due to cost. 

 
Part 3: Targeting Events of Interest in Experimental 

 
While Parts 1 and 2 were concerned with obtaining data to calibrate models with the goal of global accuracy, to 

capture specific events, such as failure, optimal data collection methods can aid in achieving models that also predict 
targeted events. In Part 3, the Targeted Information Gain for Error Reduction (TIGER) method uses expected 
information gain to balance the placement of exploration points in the design space based on model accuracy and 
capturing the event of interest. This approach was compared to using sequential and all-at-once random data collection 
methods. The comparison of global and local prediction errors indicated that this is a feasible approach based on an 
analytical two-dimensional example.  The method was also successful in a classification problem for flutter and critical 
limit cycle oscillation amplitude for a panel in hypersonic flow. 

I. Introducing Targeted Events of Interest into Optimal Data Collection Framework 
As in Parts 1 and 2 , the Kennedy and O’Hagan framework was used to relate experimental data to the model 

output through model discrepancy and measurement uncertainty. The reader is referred to Part 1 for a more thorough 
description of this framework and the uncertainties.  Additionally, Parts 1 and 2 both used the expected information 
gain (EIG) criterion to design calibration experiments. This section introduces a weighted variant of the expected 
information gain (EIGW), along with the TIGER formulation that balances the global accuracy benefit of EIG and the 
targeting ability of the EIGW.  
 Gaussian process (GP) surrogate models are used in this study, which provide a flexible way to include data points 
with measurement uncertainty (i.e., noisy data). Rather than having a separate model G and discrepancy model εG (as 
shown in Eq. (8)), the uncertain parameters are contained in the GP. The GP takes the form  

 ( ) (ˆ ) ( )Tf Z= +x h x b x   (23) 

 
Figure 15. A Pareto optimal design for a batch of two tests used for the equal cost comparison 

 

 
Figure 16. A Pareto optimal design for a batch of three tests used for the equal cost comparison 
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where f̂ represents that the model is an approximate model. Both terms of the GP model contain uncertain parameters: 
h(x)Tb is the mean function, b is a vector of coefficients, and Z is a stationary Gaussian process with zero mean and 
covariance function. The uncertain parameters θ for the GP model are thus the coefficients of the mean function and 
parameters of the covariance function. Note that the number of uncertain parameters would vary for the choice of 
mean function and covariance function. For a more detailed description of the GP surrogate models the reader is 
referred to Rasmussen and Williams (2005).29  

Consider a system of three models, where models ˆ
Af and B̂f  feed into Ĉf , for which the probability of Ĉf

exceeding a limit state is the event of interest. Experimental data y can be obtained for ˆ
Af , B̂f , and Ĉf , or data may 

be limited to a subset of the models. Additionally, each experimental measurement yε  may have different levels of 
uncertainty. In the example Bayesian network in Figure 17, u and v are the design variables, where v is shared between 
models ˆ

Af and B̂f , where ˆ
Af  is only a function of u. For this scenario, data may be obtained for all models except 

Ĉf .  This example will be re-visited in the illustrative example in Sec. II. 
 

 

A. Weighted Expected Information Gain 
In order to target regions of the design space where an event of interest (EoI) occurs, EIG can be weighted by the 

probability of the EoI. This is achieved by introducing the probability into the Monte Carlo estimate of EIG, such that 
this weight is calculated for every realization of the set of θ. Therefore, if the probability of the EoI is small when EIG 
is large, the weighted criterion would drive optimal designs away from that area of the design space.  The weighted 
expected information gain estimate EIGW is shown in Eq. (24). 

 ( ) ( ) ( ) ( )

1 1

1 1( ) Pr( ( , )) ln[Pr( | , )] ln Pr( )| ,i i i
M

i j

j
W

N

EI x EoI x y x
N M

G xyθ θ θ
= =

   ≈ −  
   

∑ ∑   (24) 

 Note that Pr( ( , ))EoI x θ  does not need to be the actually probability of the EoI itself.  For example, if it is set as 
the probability of failure, the designs chosen by EIGW may be driven to areas where the estimated probability is 1. 
This may result in inaccurate estimation of the entire failure region, particularly if the failure region is large, because 
points are only placed where the probability approaches 1.  Instead, this probability may be set as the probability of 
being near the limit state of the EoI. For example, for an EoI defined by g τ≥ , the term Pr( ( , ))EoI x θ can be replaced 
by Pr( 2 2 )gg τ κ τ≤ ≤ +−  where τ defines an area about the limit state. 

B. Targeted Information Gain for Error Reduction 
Using the EIGW criterion alone as a measure of utility would drive the optimal design to areas of predicted high 

probability of the EoI. Therefore, we introduced a bi-objective formulation, the Targeted Information Gain for Error 
Reduction (TIGER) formulation, where the utility function consists of both EIG and EIGW. The optimization problem 
of Eq. (25) is used to find the optimal design x*, where α weights the two objectives.  

 
Figure 17. Bayesian network representation of the relationship between design variables, models, 

uncertain parameters, experimental data, and measurement uncertainties  
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max ( ) (1 ) ( )

s.t.   
x TIGER WU EIG x EIG x

x X

α α+= −

∈
  (25) 

  The purpose of α is to balance global accuracy through designs chosen with large EIG and local, near EoI accuracy 
through those with large EIGW. When only maximizing EIGW, there is a risk of missing other areas of the design space 
where the EoI might occur. This is possible if one or more of the models is inaccurate in the design space.  A natural 
way to avoid the use of test points to determine model error is to use a cross-validation metric, here the partial 
prediction error sum of squares PRESSRMS. This is found by leaving out a design point, re-training with the remaining 
data, and measuring the error at that point to get eXV at that point. The operation is repeated for p training points to 
form a vector of eXV. The PRESSRMS is calculated by 

 1 T
RMS XV XVP e

p
RE S eS =   (26) 

For each model, the PRESSRMS is used to determine the value of α. The value of α is increasing with PRESSRMS, such 
that a large PRESSRMS corresponds to a large value of α. The exact form of α as a function of PRESSRMS is user-defined, 
but the authors propose a linear function as used in the example problems in this paper. 

 The process of calibration of the uncertain parameters proceeds in iterations. In each iteration, the optimal 
design is found and added to the data set, and the models are calibrated with the new data. The flowchart in Figure 18 
displays the sequential data collection process using the TIGER criterion for n models. When there are multiple models 
and corresponding experimental responses that can be collected, it is possible to compare the utility of collecting each 
form of data. Two branches are present in the flowchart to account for multiple experiments in an iteration (e.g., obtain 
yA and yB to calibrate ˆ

Af  and B̂f , respectively)  or a single experiment in an iteration (e.g., obtain yA or yB to calibrate 
ˆ

Af  or B̂f , respectively). In the example shown in Figure 17, this would mean that the utilities of yA and yB would 
determine which experiment was performed to obtain calibration data as in the “single experiment per iteration” 
branch.  For the same example, in an alternate scenario, both experiments could be performed at the different x* to 
calibrate ˆ

Af  and B̂f , as in the “multiple experiments per iteration” branch. The methodology described is applicable 
to either scenario. 
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A global optimization algorithm, such as DIRECT31, can be used to find the optimum. The DIRECT algorithm 

proceeds by iteratively dividing the design space into hyperrectangles, focusing on areas where the objective function 
is promising while also exploring the design space.  In the following section, the DIRECT algorithm is used for a two-
dimensional analytical example. In the application problem, the design space is divided into a discrete set at which 
the objective function is evaluated at all candidate locations from which the optimum is chosen. 

II. Illustrative Example 
The sequential data collection methods described in the previous section are illustrated on a two-dimensional 

analytical function. The Targeted Information Gain for Error Reduction (TIGER) method is compared against using 
the objective functions of its two constituent  parts: 1)  sequential EIG, and 3) sequential EIGW. The results are 
compared to two all-at-once design of experiments with calibration, full factorial (FF) and Latin Hypercube Sampling 
(LHS). 

A. Problem Description 
The modified camelback function from Picheny et al.22 is a single function that was separated into three models 

for the purposes of this study. The function is described by Eqs. (27)-(31), where the design space is [-1,1] for design 
variables u and v. The event of interest is the failure of the response fC, where failure occurs if 1.3cf ≥ .  Note that fA 
is a one-dimensional function of u, while fB is a function of both design variables. The Bayesian network shown in 
Figure 17 represents this example. 

  (27) 

  (28) 

  (29) 

2 24( ) 4 2.1 1
3Af u u u u = − + 

 

( )2 2( , ) 4 4Bf u v uv v v= + − +

( , ) ( ) ( , ) 0.7C A Bf u v f u f u v= + −

 
Figure 18. Flowchart of sequential data collection process using TIGER criterion. 
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  (30) 

  (31) 

  

 For this problem, GP surrogates are built to provide predictions of ˆ
Af and B̂f , and data collection experiments 

can only be performed to calibrate the θA and θB (epistemic uncertainties). The measurement uncertainties εyA and εyB 
are known. Additionally, the design variables have some aleatory uncertainty that is known. The distributions of all 
random (aleatory) uncertainties are provided in Table 6. The Bayesian network shown in Figure 17 represents this 
example. 
 Figure 19 displays the contours of the nominal true values of each model and the probability of failure pf. Failure 
regions where fC exceeds 1.3 are in the upper right and lower left corners of the design space. 

 
 In this work, the GP surrogates are calibrated with the available data, but the distributions of uncertain parameters 
θA and θB are not explicity obtained. Rather, the GP surrogates are trained by maximizing the likelihood of θ, such that 
a deterministic value is obtained. The GP surrogates in this study have a zero mean function and use the Matérn 
covariance function.29 Random realizations of the predictions f̂  are obtained by taking the mean value of the 
prediction  and sampling from the prediction uncertainty (i.e, the prediction standard deviation)  to represent model 
uncertainty of the GP surrogate. Note that an alternative is sampling from the posterior distribution of θ through 
Markov Chain Monte Carlo to obtain realizations of the predicted f̂ .  
 When the PRESSRMS of the GP surrogates are large, then points are added in regions with large unweighted EIG. 
In this example, each model ˆ

Af  and B̂f  has a corresponding α, which is bounded between [0, 1] and is linear between 
PRESSRMS values between 0 and 0.15, as shown in Figure 20. The exact relationship between PRESSRMS and α is 
subjective and can be tuned as necessary based on intuition, design space exploration, or level of ‘aggression’ in 
locating the event of interest. 

1.2 0.1u u= −

0.9v v=

Table 6. Distributions of uncertain parameters for illustrative example 

Parameter Distribution 
u ,0 )2( . 8uN µ  
v ,0 )2( . 8vN µ  

yAε  0,0( ).01N  

yBε  0,0( ).02N  

 

 
Figure 19. True values of  nominal fA, fB, fC, failure region (fC ≥ 1.3), and pf 
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B.  Comparison of Data Collection Methods 
The sequential data collection with the Targeted Information Gain for Error Reduction (TIGER) methodology was 

compared to two cases: 1) sequential data collection with maximum EIG criterion  2) sequential data collection with 
maximum EIGW criterion.  Additionally, comparisons were made to all-at-once design of experiments with full 
factorial sampling and Latin Hypercube sampling. All data collected (i.e., yA and yB) is ‘synthetic’ data obtained by 
evaluating Eqs. (27)-(31), given a randomly sampled value of the uncertain parameters in Table 6. That is, a random 
sample of u and v are taken given the nominal uµ  and vµ  from the data collection method, and random samples of 
the measurement uncertainties yAε and yBε are added to the computed Af and Bf . 

All sequential data collection methods used an initial DoE of five points found by Latin Hypercube Sampling. 
Therefore, initially there was a combined total of 10 training points for the two approximations ˆ

Af and B̂f .3 Note that 

for ˆ
Af , this puts two points at 1u = −  and 1u = . In each iteration, an optimum point was found by comparing the 

maximization criterion for ˆ
Af and B̂f , and the models are calibrated with experimental data for the optimum design 

for either ˆ
Af or B̂f . This corresponds to the blue “single experiment per iteration” branch in the flowchart in Figure 

18. Forty iterations were performed where one point was added per iteration, leading to a total of 50 points for the 
final prediction.  

The weight for the EIGW criterion is determined by the probability of being near the limit state, represented by τ, 
in the space of the response. The weight is determined by ( ) Pr 1.3 2 .3ˆ 1 2Cfτ τ≤ ≤− + , where τ = 0.15 in this study.  

Here, the random uncertainties in inputs u and v are not accounted for, such that the probability is determined only by 
the prediction and prediction uncertainty of the surrogate. It is cheap to calculate this probability because it is done 
using the surrogate approximations of ˆ

Af and B̂f  with 2,500 Monte Carlo samples obtained from the GP prediction 
and prediction uncertainty (equivalently, one could sample from uncertain distribution of θA and θB). Note that 
accounting for the random uncertainty in u and v would require double loop sampling from the distribution of 
epistemic uncertainties θ in the outer loop, and random uncertainties in the inner loop. Since fA is only a function of 
u, the weight for EIGW for performing an experiment for yA is determined by the maximum probability at u taking v at 
100 uniformly spaced points between [-1,1].  

For this study, the stopping criterion of the DIRECT optimizer was a maximum number of function evaluations of 
250. Calculating TIGER from Eq. (6) involved estimating of EIG and EIGW  with N = M = 1,000 samples in Eq. (24) 
. The probability of failure was obtained using 2,500 samples of u and v given the distributions of their random 
uncertainties in Table 6. 

The following subsections compare the results obtained from 20 realizations (e.g., repetitions) for each data 
collection method to observe the general trends and to account for randomness in each method from Monte Carlo 
sampling and uncertain input parameters. In addition, a graphical comparison is provided of the points added by each 
data collection method for a single realization. This allows the reader to compare the placement of points in the design 
space obtained by the different data collection methods. Those results are accompanied by a comparison of the errors 
                                                           
3 In this study, GP surrogates are built and require an initial set of training points.  In an alternate scenario, a model, 
physical or numerical, could already be in place and additional data points are collected to calibrate any uncertain 
parameters. Therefore, the initial DoE points do not necessarily need to be taken into account as part of the data 
collection process. Here, these are included in the total number of points, but for the sequential data collection 
processes, the intial DoE could just be thought of as what was used to train a stochastic model. 

 
Figure 20. Value of α as a function of PRESSRMS  
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in predicting the models and the probability of failure obtained by all methods over all 20 realizations. The intent of 
this study is to demonstrate the feasibility of TIGER for calibration of accurate predictive models that can identify 
events of interest. 

 
1. Expected  information gain and weighted expected information gain 

The EIG criterion is expected to provide space filling points in the design space. In contrast, the EIGW criterion is 

expected to put points close to the limit state of the failure region, where ( ) Pr 1.3 2 .3ˆ 1 2Cfτ τ≤ ≤− +   is large. Here, 

we examine the results of a single realization of points added to either train ˆ
Af or B̂f  according to both criteria.  

Figure 21 displays the EIG value of the optimal design for each model, along with EIGW of that design (i.e., the 
probability of being in the region around the limit state).  Though this probability is not used with the EIG criterion, 
is the plots are shown to illustrate that points are not chosen based on high probability, and that there is significant 
variation in the probabilities of the chosen designs. It was also observed that 34 of the 40 points added were used to 
train B̂f . After approximately 10 design iterations, Figure 21 shows that once a single point was added to train ˆ

Af , 

points were added to train B̂f in consecutive iterations, before a single point was again added to train ˆ
Af . This resulted 

in nearly a constant erms of ˆ
Af  both globally and near the EoI as displayed in Figure 21. It was also observed that the 

error in Ĉf is closely tied to the error in B̂f . After approximately iteration 15, the majority of points are allocated to 

B̂f such that the error both globally and near the EoI is reduced. 
 

 

 
Figure 21. Using the EIG criterion, the history of the probability of being near the EoI , EIG, and EIGW values 

of the data points added in each design iteration, and the global and near EoI erms of each approximation. 
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 Figure 22 shows the EIGW value of the optimal design for each model, along with weight of that design given by 

( ) Pr 1.3 2 .3ˆ 1 2Cfτ τ≤ ≤− + . Additionally, the unweighted EIG values at the optimal designs are shown for 

comparison. As expected, compared to the EIG criterion, the EIGW places more points at regions where the probability 
of being near the limit state is large.  As more points are added to refine the failure region, the probability goes to 1, 
such that EIG and EIGW are nearly equal in later iterations. However, for the majority of the sequential design 
iterations, the magnitude of the utility of EIG was greater than EIGW, since the latter was scaled by the probability of 
being near the EoI. This is expected, since EIGW is designed to select data points near the EoI at the cost of reducing 
overall model uncertainty. As with the EIG criterion, the majority of the points (33 of 40 points added)  after design 
iteration 5 were allocated to train B̂f , with consecutive, subsequent iterations adding points to B̂f  after adding a 

single point to ˆ
Af . 

 
 The erms at test points shown in Figure 22 shows that the overall error given by the approximate models trained 
using EIGW is smaller than those obtained by EIG. This is mainly due to the large probability of being near the EoI of 
points added for both ˆ

Af  and B̂f . Note that here we are only comparing a single realization with each criterion, and 
the stochastic nature of the problem and algorithm make it difficult to generalize results.  In the conclusion of this 
section, we describe observations and make conclusions based on the overall trends of 20 realizations. 

Figures 9-11 show the model predictions obtained with EIG and EIGW at design iterations 8, 22, and 40 
(corresponding to a total points of 18, 32, and 50, respectively) for a single realization.  As shown in Figure 23, the 
points in iteration 8 were mostly spread along the area where v > 0 with both criteria.  

 
Figure 22. Using the EIGW criterion, the history of the probability of being near the EoI , EIG, and EIGW values of 

the data points added in each design iteration, and the global and near EoI erms of each approximation. 
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The noticeable difference in placement of points is made clear in Figs. 10 and 11. For the EIG criterion, by design 

iterations 22 and 40 the points were well-spread throughout the design space, providing accurate approximations of   
fC. The EIGW criterion puts all points in or near the failure region.   

 

 

 

 
Figure 23. Model predictions after 8 design iterations (18 total points) using the EIG and EIGW criteria. 

 

 
Figure 24. Model predictions after 22 design iterations (32 total points) using the EIG and EIGW criteria. 

 

 
Figure 25. Model predictions after 40 design iterations (50 total points) using the EIG and EIGW criteria. 
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 Figure 26 displays the approximation of pf and ˆ 1.3Cf ≥ .  Note that there is little difference between the 
approximations at design iterations 22 and 40 for the EIG criterion, and that both are close to the true pf and failure 
region shown in Figure 19. By iteration 22, for EIGW, the pf and failure region are close to the true values, but is 
slightly worse than the EIG criterion. 

 
 
2. Targeted Information Gain for Error Reduction (TIGER) 

The TIGER criterion is expected to provide a balance between the EIG and  EIGW criteria. Figure 27 displays the 
weight α (calculated from PRESSRMS as in Figure 20) placed on each models through 40 iterations for a single 
realization. Initially, 0α = for both ˆ

Af and B̂f  such that TIGER values were only functions of their respective EIGW 

values. However, by the next iteration, the cross-validation error of ˆ
Af  increased α to 1 such that the TIGER criterion 

was solely the EIG value.  As the cross-validation error of ˆ
Af  was reduced with the addition of points globally, α

approached 0 through 10 iterations, thus placing more weight on EIGW. In effect, this resulted in choosing design 

points with large values of ( ) Pr 1.3 2 .3ˆ 1 2Cfτ τ≤ ≤− + through the iterations. After iteration 10, most points were 

placed for B̂f  with more weight on the EIGW criterion, resulting in points with probability near 1 (i.e., near the event 

of interest). As with the other criteria, the number of points for B̂f  (32 points) outnumbered the points for ˆ
Af  (8 

points). 

j

 
Figure 26. Predicted probability of failure and limit state boundaries after iterations 8, 22, and 40 using the EIG and 

EIGW criteria. 
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Figure 28 displays the model predictions for design iterations 8, 22, and 40. Unlike with the EIGW criterion, TIGER 

places more points globally through iterations 8 and 22.  However, by 40 iterations, many points are around the failure 
region for a comparable approximation to what was achieved with EIGW.  

 
Figure 27. Using the TIGER criterion, the history of weights α, the probability of being near the EoI, EIG and 

EIGW values of the data points added in each design iteration, and the global and near EoI erms of each 
approximation. 
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 Figure 29 displays the predicted probability of failure and limit state boundaries using the TIGER criterion. After 
8 design iterations, the failure regions along u = ±1 are found, and are refined by iteration 22.  After 40 iterations, the 
model accurately found the probability of failure and limit state boundaries. 

 

C. Comparison of Experimental Designs 
One advantage of the information theory based sequential data collection methods are that they can determine both 

the optimal data point and experiment by comparing the information gain from each source.  The single realization 
results showed that the majority of designs were used to train B̂f , which is more complex than the one-dimensional 

quadratic fA. Over 20 realizations of each method, it was observed that each method allocated points to train B̂f nearly 

 
Figure 28. Model predictions after design iteration 8, 22, and 40 (18, 32, and 50 total points, respectively)  

using the TIGER criterion. 

 

 
Figure 29. Predicted probability of failure and limit state boundaries after design iterations 8, 

22, and 40 (18, 32, and 50 total points, respectively) using the TIGER criterion. 
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80% of the time, as shown in Table 7. Note that this study does not account for model complexity or cost of the 
experiment, but measurement uncertainty is taken into account in the expected information gain.4 

To compare the data collection methods, the root mean square error (erms) relative to the nominal function was 
calculated at 100 random points in the design space. Additionally, the accuracy near the EoI (corresponding to the 
area ±2τ from the limit state) was also calculated at 100 random points. Figure 30 shows a comparison of these errors 
normalized by the range of the true values of fC  for the erms values, and Figure 31 zooms in on the normalized erms axis.  
The comparisons were made for the meidan of 20 realizations of each case. Additionally, the comparison was made 
to design of experiments with LHS and full factorial (FF) design of experiments. 
 For global and near EoI accuracy, the FF DoE had the worst performance.  Of the sequential data collection 
methods, the EIG criterion provided global accuracy, but was outperformed near the EoI by EIGW and TIGER, which 
are both driven to put points near the EoI. As expected, EIGW resulted in the smallest overall error near the EoI, but it 
did not perform as well globally as EIG and TIGER.  Finally, TIGER provided a balance in accuracy between EIG and 
EIGW, performing well both globally and near the EoI.  For 32 and 50 total function evaluations, it performs as well 
as EIGW near the EoI, which can be attributed to the TIGER criterion placing more weight on designs close to the EoI 
as the accuracy of the model predictions increased. Note that the level of ‘aggression’ in locating the EoI can be tuned 
by the user-defined form of ( )RMSPRESSα . 

 
 
 

                                                           
4 That is, the uncertainty in the model could be large, but a large measurement uncertainty would result in less 
information gained from data collected in the experiment. 

Table 7. Median percentage of points used to train B̂f with each sequential data collection criterion 

Criterion Median B̂f training points  
(% of total number of points) 

EIG 80 
EIGW 80 

TIGER 78 
 

 

 
Figure 30. Comparison of erms of models at test points globally and near the EoI for FF, LHS, EIG, EIGW, and 

TIGER criteria.  
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D. Adjusting the Level of TIGER ‘Aggression’ 
The form of α as a function of PRESSRMS can be adjusted to change the level of ‘aggression’ of the search for the 

EoI.  That is,  α can be changed to either increase or decrease the emphasis put on EIG or EIGW. This scenario might 
occur when an analysist has some idea of how accurage a model can be, so a lower bound is set for PRESSRMS. We 
examined α bounded by [0, 1] and linear between PRESSRMS values between 0.1 and 0.25, as shown in Figure 32. Note 
that this means that for PRESSRMS values less than 0.1, the objective function is only EIGW. 

 

 
Figure 33 displays the model predictions using the more aggressive α. Comparing this results to Figure 28, it was 

obvious that the more aggressive α places the majority of points near the EoI. 

 

 
Figure 31. Zoom in on comparison of erms of models at test points globally and near the EoI for FF, LHS, EIG, 

EIGW, and TIGER criteria.  
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Figure 32. More aggressive α as a function of PRESSRMS  
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Figure 34 displays the predicted probability of failure and limit state boundaries using the TIGER criterion. After 

8 design iterations, the failure regions along u = ±1 are found, and are refined by iteration 22.  After 40 iterations, the 
model accurately found the probability of failure and limit state boundaries. 

 
 

  

 
Figure 33. Model predictions after design iteration 8, 22, and 40 (18, 32, and 50 total points, respectively)  

using the TIGER criterion. 

 

 
Figure 34. Predicted probability of failure and limit state boundaries after design iterations 8, 

22, and 40 (18, 32, and 50 total points, respectively) using the TIGER criterion. 
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III. Application Problem: Flutter Boundary and Critical Limit Cycle Oscillation Amplitude 
Identification 

Hypersonic aircraft stucures are subjected to intense, coupled, fluid-thermal-structural loading during high-speed 
flight. The aeroelastic model components of the fluid-structure interaction are shown in Figure 35. Considering a panel 
in hypersonic flow, the flow acting on the structure results in aerodynamic pressure on the wetted surface of the panel. 
This leads to elastic deformation of the panel into the flow field, resulting in feedback on the flow.   

 

 
The aeroelastic model was used to investigate the impact of model uncertainty on nonlinear panel flutter. Flutter 

is an aeroelastic instability where the amplitude of vibration of a structural component in a flow field increases without 
a bound. In the case of a panel, nonlinear membrane stretching provides a stabilizing effect that restrains the panel 
motion to a bounded amplitude for limit cycle oscillations (LCO). Panel flutter not only provides an extreme response 
scenario for this coupled system, but is a design constraint of aerospace structures. Unsurprisingly, high fidelity 
analyses are computationally expensive, such that researchers have examined efficient methods of coupling the 
required aerodynamic and structural analyses in the time domain.32 

Perez et al.33 predicted frequencies and amplitudes associated with limit cycle oscillations by coupling a structural 
reduced order model (ROM) with aerodynamic pressure predictions from piston theory. In their work, the model-form 
error in piston theory was identified and used to correct the aerodynamic pressure predictions. The ROM built with 6 
linear modes was constructed for an isotropic 2-D panel clamped along the sides perpendicular  to the direction of the 
flow. The geometric, material properties of the panel, and flow conditions are shown in Table 8. The ROM was 
constructed with an in-house FEA beam model based on a co-rotational formulation capable of analyzing problems 
with large rotations and small strains. The FEA model was built using 40 beam elements, a total of 123 degrees-of-
freedom. Figure 35 also provides a schematic of the solution of the aeroelastic problem.   

 
 

Table 8. Aeroelastic model parameters 

Parameter Value CV (%) Unit 
Mach Number 5 - 12   

Altitude 30 -- km 
Freebody Surface Inclination 5 -- deg 

Panel Length 1.5 -- m 
Panel Thickness 2 -- mm 

Density 4539 -- kg/m3 
Modulus of Elasticity 113 1 GPa 

Temperature 226 1 K 
Pressure 1.2 1 kPa 

 
The panel displacement and velocity, ( ),w x t and ( ),w x t , are computed using the structural ROM. The panel 

deformation serves as a boundary condition to the flow problem, for which oblique shock relations are used to 
compute the pressure after the shock, and 3rd-order piston theory to obtain the pressure at the deformed surface of 

 
Figure 35. Aeroelastic coupling and aeroelastic solution, where panel slope and velocity is transferred to piston 

theory and aerodynamic pressure is transferred to the structural solution 
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the panel. 
Two limit state conditions were considered as the EoIs for this study. The first one was the flutter boundary of the 

panel. Typically, the panel stiffness has to be increased in order to avoid reaching its flutter boundary for pre-defined 
flow conditions. The other limit state considered was a critical limit cycle oscillation amplitude. In practice, the 
definition of this critical amplitude would have to take into consideration the fatigue life of the panel as well as the 
aerodynamic performance.  

The identification of these limit states is done as follows. For a pre-defined altitude, the Mach number of the flow 
is initialized and the type of limit state of interest specified (i.e., flutter boundary or critical limit cycle oscillation 
amplitude). Then, the dynamic response of the panel to a small initial displacement is computed by marching the 
structural equations of motion in time using a Newmark-β algorithm. This algorithm is unconditionally stable for 
linear problems. For nonlinear problems, as the present case, the time step used in the integration of the equations of 
motion is chosen as the largest one that leads to a converged solution. After marching the solution for a pre-defined 
length of time the integration stops and the structural response is used to determine if the conditions for the limit state 
selected are met. The existence of a limit cycle oscillation (i.e., amplitude aLCO>0) indicates that the flutter boundary 
has been crossed. If the amplitude of the limit cycle oscillation is larger than the critical one means that the second 
limit state has been reached. The process is stoped if the limit state condition is reached; otherwise, the Mach number 
of the flow is increased. This process is repeated until the condition for the limit state chosen is met. 

Even with the use of surrogate CFD models and ROMs, the identification of the limit states can be computationally 
expensive due to the stepping of Mach numbers combined with the Newmark-β algorithm.  In the presence of 
uncertainty, particularly when we seek to propogate uncertainty through Monte Carlo sampling, the analysis becomes 
even moreso computationally demanding.  Therefore, in this study, we sought to using information gain techniques to 
identify the limit states with classifiers that consider the amplitude as a function of Mach number in the presence of 
input uncertainties.  The input temperature, pressure, and elastic modulus were considered to be uncertain, with known 
coefficient of variation shown in Table 8. To identify the limit states, we used a Gaussian Naïve Bayes classifier, 
which classifies a point based on Mach number as a no flutter, non-critcal LCO, or critical LCO point. Additionally, 
the probability of belonging to each class is provided. For detailed information about the Naïve Bayes classifier, the 
reader is referred to the Appendix. 

E. Naïve Bayes Classifiers for Flutter and Critical LCO Amplitude 
The Naïve Bayes (NB) classifier, described in detail in the Appendix, was used to find the probability of flutter 

and probability of exceeding the critical LCO amplitude aLCO = 1 unit thickness at a given Mach number.  Temperature, 
pressure, and elastic modulus were considered as random variables with known aleatory uncertainty, but Mach number 
was the only the experimental design variable.  Therefore, no assumptions about conditional independence among 
design variables were necessary.  

To find the probability of flutter (aLCO > 0) and critical LCO for (aLCO ≥ 1), two NB classifiers with two classes 
each with binary labels y were defined:  

1) Flutter: yF = 0 for aLCO = 0 (no flutter) and yF = 1 for  aLCO > 0 & aLCO < 1 (non-critical LCO) 
2) Critical LCO: ycrit = 0 for aLCO < 1 (no flutter or non-critical LCO) and y = 1 for aLCO ≥ 1 (critical LCO).  

Note than an alternative approach could define a single NB classifier with three classes for no flutter, non-critical 
LCO, and critical LCO. 

Since Mach number was the only attribute and for each two class model, there are a total of four uncertain 
parameters for each model, which are the means and standard deviations of each Gaussian distribution for each class. 
Therfore, in the context of the notation of this study, the Mach numbers serve as the design variables x, while the 
means and standard deviations of each classifier are the uncertain parameters θ which are calibrated with test data. 
The priors for the classification problem (i.e., Pr( )Ky y=  for class k, refer to Eq. (38) in the Appendix) were set as 
uniform, rather than the empirical probability for the data. The NB were trained using an initial DoE of nine points, 
which were randomly sampled from the M ~ U(5,12), with three points belonging to each class.  

F. Data Collection Using TIGER 
Since there were only three possible outcomes possible at each data point (i.e., no flutter, non-critical LCO, and 

critical LCO), EIG, EIGW, and UTIGER could be calculated explicitly at each M. This was achieved by simply re-fitting 
the NB classifier for each possible class at each candidate M. The expected information gain was then calculated with 
Eq. (32) for K = 2 classes, which is provided explicity for this problem. 
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In this notation, |Pr( )iy y θ=  represents the probability of the ith class given the prior θ, and |Pr( )
ji y yy y θ == is the 

re-fitted NB classifier given y = yj. 
 For EIGW, the event of interest was determined by the class. Since the focus of this study was identifying flutter 
(yF = 0) and the onset of critical amplitude (ycrit = 1), the EoIs for classes 0 and 1 are the boundaries between the 
classes for each model, respectively.  

 [ ]0| ( ) ( ) Pr( 0 | ) Pr( 1 | )
FW y F FEIG M EIG M y yθ θ= = = =   (33) 

 [ ]1| ( ) ( ) Pr( 0 | ) Pr( 1 | )
critW y crit critEIG M EIG M y yθ θ= = = =   (34) 

The optimization problem shown in Eq. (25) could then be solved to find the optimum M for a given EoI, where the 
candidate Mach numbers were sampled from a discrete set of 101 uniformly spaced points on M = [5,12] . In this 
study, the goal was to find the designs with the maximum utilities for re-training each classifier. Therefore, Eq. (25) 
was solved to find the optimum M* for each EoI for a given class using Eqs. (32)-(34), for a total of two new points 
in each iteration. The weight α was again a function of the cross-validation error and the relationship is shown in 
Figure 36. In this example, the cross-validation error is the misclassification rate calculated from the number of 
misclassifications between the true label and NB classifier in a leave-one-out fashion. 

 
 The algorithm using the maximum TIGER criterion was run for 10 design iterations for 20 realizations. Since two 
points were added to train each classifier in each design iteration, there were a total of 29 design points for each 
realization, including the initial DoE of nine points. For each optimum M* found using TIGER, a random sample of 
the input uncertainties (i.e., temperature, pressure, and elastic modulus) were obtained and the corresponding aLCO was 
calculated using the structural ROM and CFD surrogate.  The points were then added to the data set and available to 
both classifiers in the next design iteration. 

As a point of comparison to a NB classifier with a large number of points, 1,560 points were obtained by sampling 
M from 5 to 12 with random temperature, pressure, and elastic modulus. These 1,560 points were used to fit ‘true’ NB 
classifiers. Figure 37 displays a histogram of the Mach numbers of the 1,560 points. Based on the histogram, a slightly 
larger percentage of the sampled points were around each EoI, and a small region near M = 9  was unsampled.  

 
Figure 38 shows the 1,560 points with the original label and the labels given by the ‘true’ NB classifiers. It was 
observed that there is some misclassification of points at the limit states of the EoIs.  

 
Figure 36. Value of α as a function of cross-validation error 
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Figure 37. Histogram of the Mach number of the bank of 1,560 points. 
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Figure 38. Original classes of 1,560 points and classes given by ‘true’ NB classifiers. 

Using the ‘true’ classifiers, the posterior probability of 1,000 test points uniformly spaced on M = [5,12] with 
nominal values for uncertain inputs was calculated and is shown in Figure 39. These ‘true’ NB classifiers were used 
to make comparisons to the classifiers obtained with TIGER at the 1,000 test points. 

 
Figure 39. Posterior probabilities of 1,000 test points from M from 5 to 12 for the ‘true’ NB classifers. 

G. Flutter and Critical LCO Identification Results 
The distribution of optimal M for each classifier using TIGER over 20 realizations of 10 design iterations is 

displayed in Figure 40. Figure 40 also displays a histogram that shows the majority of points were near both EoIs, 
namely M = 7 for flutter and M = 10 for critical LCO.  
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For each classifier, only 20% of points were placed away from the EoI. This is due to α being equal to zero 

approximately 80% of the time, which puts all of the weight on EIGW  (targeting the EoIs), as shown in Figure 41.  
The small percentage of points for α > 0 resulted in the points away from the EoIs. 

 
Figure 42 displays the eRMS and area metric of the posterior probabilities given by the NB classifier compared to 

the ‘true’ posterior probabilities over 1,000 test points uniformly spaced on M = [5,12]. The erms was calculated for M 
≤ 9 for the flutter classifier and for M ≥ 9 for the critical LCO classifier. It was observed that the error in each 
probability reduced as more points were added through design iterations, with both EoIs predicted with comparable 
accuracy by the NB classifiers after 10 iterations.  

 
Figure 40. Optimal M added using TIGER over 10 iterations and 20 realizations for flutter and critical LCO 

classifiers with the histogram representing the frequency of each optimal M. 

 

 
Figure 41. Weight α for TIGER over 10 iterations and 20 realizations for flutter and critical LCO classifiers with the 

histogram representing the frequency of each α. 
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Additionally, the difference in area between the ‘true’ and NB classifier probability curves was measured over the 

same 1,000 test points of M.  Equation (35) displays the area metric34 d, which is a commonly used measure for 
validation of computational models, where yi represents yF or ycrit. As with the erms, the domain of M was used to 
calculate d for M ≤ 9, and for M ≥ 9 for the critical LCO classifier.  

 Pr( |Pr( ) )i true i
M

yy dMyd y θ− == =∫   (35) 

The area metric results shown in Figure 42 mostly agree with the erms, where the critical LCO classifier showed 
relatively the same improvement as the flutter classifier. 

As another assessment of the TIGER classifiers, 20 realizations of random DoEs of 29 points were created for 
comparison with TIGER for an equal number of training points. For these random DoEs, the Mach number was 
sampled randomly from the 1,560 points that were used to make the ‘true’ classifiers. Figure 43 compares the global 
and near EoI erms over 1,000 test points for a total of 29 points obtained through TIGER and by 20 realizations of a 
randomly sampled DoE of 29 points.  That is, the TIGER results shown are obtained from the final classifier trained 
by after 10 design iterations. For the region near EoI, consider the ranges of 6.5 8M≤ ≤ for flutter and 9.5 11M≤ ≤
for critical LCO. For flutter, TIGER outperforms the random DoE based on erms and the area metric. The LCO 
classification is more competitive for both global and near the EoI.  This success can be attributed to the placement of 
points near the limit state of the EoI by TIGER, whereas the random DoEs were more uniformly distributed but with 
slightly larger numbers of samples near the EoIs, as shown previously in Figure 37. 

 

 
Based on the results of this application problem, TIGER is slightly better than using a random DoE for the same 

number of total points.  However, TIGER may be useful if a large number of points already exist in the DoE.  For 
example, the random DoE had larger error in estimating the probability of flutter.  As the TIGER criterion places many 
points near the EoI limit state, it could be useful in reducing the error of the random DoE. Additionally, the user-
defined form of α as a function of the cross-validation error can be adjusted.  As observed over 20 realizations, α = 0 

 
Figure 42. eRMS and area metric d given by ‘true’ posterior probabilities and those given by NB classifier. The solid 

line represents the median with the 5th and 95th percentiles represented by error bars.  

 

 
Figure 43. Boxplot of erms over 1,000 test points for 29 total points over 20 realizations.  
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for the majority of iterations.  Changing the α function could result in more global, space-filling points that increase 
the accuracy of the NB classifiers trained with data from the TIGER criterion. 

IV. Summary 
A data collection approach based on expected information gain was developed to determine the optimal design of 

experiments to build models that accurately predict targeted events while maintaining global accuracy. A bi-objective 
Targeted Information Gain for Error Reduction (TIGER) approach was formulated to balance targeting the event with 
global accuracy. The first investigation focused on the accurate prediction of the limit state and probability of failure 
of a two-dimensional analytical function. A sequential data collection approach was taken to locate the design with 
the maximum TIGER criterion, and noisy test data was obtained to calibrate Gaussian process surrogates until the 
maximum number of allowable tests was reached. Additionally, it allowed the comparison of two information sources, 
such that it was possible to allocate experiments for training data between the models. It was observed that TIGER is 
an effective approach based on the comparison of prediction errors with three other data collection methods.  

Sequential data collection with the TIGER criterion was used to find the optimal data points for training a classifer 
for  flutter and critical LCO.  This method was shown to be much more accurate than a random design of experiments 
for the same number of points, and it displayed the ability to put points near the boundary, which is useful when 
working with accurate global models. 

Finally, both examples in this study used statistical models (i.e., naïve Bayes classifiers and Gaussian process 
surrogates). Therefore, the method was dependent on the initial design of experiments and heuristics (e.g., the weight 
parameter α based on cross-validation error). For physical or numerical models, where initial training points are 
uncessesary, such parameters may not be applicable, so the user would have to define these parameters or additional 
heuristics for their particular problem. For example, without an initial set of training points, cross-validation error has 
no meaning, which leads to an undefined value of α. To implement the TIGER methodology, the user could define an 
additional heuristic, such as using the expected information gain criterion to select points for the first few design 
iterations before switching to the TIGER formulation.  

Future work includes investigating the implementation of an experimental budget given the cost of tests. In the 
modified camelback example presented, the majority of points were added to train the more complex two-dimensional 
model rather than the one-dimensional model. The addition of cost would play an interesting role in the allocation of 
experiments among multiple models. 

Appendix: Gaussian Naïve Bayes Classifiers 
The Naïve Bayes (NB) algorithm35,36 is used to estimate discrete classifications y for attributes x, which can be 

considered as design variables in this study. For NB classifiers, an important assumption is that the n attributes or 
design variables (xi for the ith attribute) are conditionally independent of each other for a given y as given by Eq. (36) 

 1,., | ) Pr(Pr( | )
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n i
i

x y x yx = ∏   (36) 

For K classes and n attributes, Bayes’ rule is used to describe the probability that y will take on its kth possible value 
as shown in Eq. (37), given the assumptions of conditional independence of the xi. 
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At a new x, 1,.,new
nx x x= , the probability that it belongs to a class can be calculated by Eq. (37). To classify xnew 

to the most probable value of y, the NB classification rule is  

 
Pr( ) Pr( | )

Pr( ) Pr(
arg ma

| )
x

k

k i k
i

j
j i

y
ji

y y x y y

y y x y y
y ←

= =

= =

∏
∑ ∏

  (38) 



40 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

which simplifies to  

 Pr(arg m ) Pr( | )ax
k

k i k
iy

y y x yy y= =← ∏   (39) 

because the denominator is independent of yk. 
 For continuous inputs xi, as considered in this study, we can represent the distributions Pr( )|ix y by assuming that 
for each possible discrete class yk, the distribution of each xi is Gaussian. To train the NB classifer, the mean ikµ  and 
standard deviation ikσ  of each Gaussian is estimated, along with the prior Pr( )ky y= . 

 [ | ]ik i kE x y yµ = =   (40) 

 2 2[( ) | ]ik i ik kE x y yσ µ= − =   (41) 

Therefore, for a Gaussian NB classifier, there are 2nK uncertain parameters to estimate independently, which make 
up the uncertain parameters θ. Maximum likelihood estimators are used to estimate the parameters as shown in Eqs. 
(42) and (43), 
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where ( )ky yδ = is 1 if kY y= and 0 otherwise, such that the role of δ is to select the training examples for which 

ky y= . 
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